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ABSTRACT L o
PP ok b7
Examined is the field of a point emitter in a piecewise -
uniform waveguide with the help of approximate impedance-type
boundary conditions, A formula is obtained for a layout consisting

of two extended sections, An estimate is made of the efiect of

geometrical inhomogeneities.

COVER TO COVER TRANSLATICH ﬁ Di//// o

Approximate Boundary Conditions

As is well known [1], the classical way for an exact solu-
tion of a boundary problem requires a simultaneous consideration
of fields on bhoth sides of the boundary of the partition, with a
subsequent joining of the fields at that boundary. However, this
is not the only way of doing it. It is possible to utilize such
approximate impedance-~type boundary conditions EE-—4], when the
exact solution resides in the consideration of the field within the
bounded region of space. The Creen equation is in that case the nost

appropriate device.

This Green equation is an integral equation written as

follows

o-ol/-o



¥ = o+ %S[%wo—\p%‘fg]ds, ' (1)
S
where Y})is the Green function § S — the surface of the division
n — the normal to its boundary ; q/js tie scalar potential or one
of the cowmponents of the Hertz vector. Considered are below only
axially-symnetric problems in wvhich one component of the Herz vector
is sufiicient. Together witl: that, ¥ may be in certain cases one of
the field's components. L.et us write the ap/roximate boundary condi-
tion in the form:
A . K R d |
<2 = oy, az_lk_glfk2—~kicosx‘}, (2)
winere k; and ka - are the wave numbers at difilerent sides of the
divigion's boundary ;‘@ is the angle of slide oi :he incident wave.
The boundary condition (2) is exact for a plane wave and approxinate
for the arbitrary-type wave.
Louation (1) is valid only for waves that vary in the neigh-

borhood of the source as 1l/r. Thus, if ¥ represents the field, it

m

nay only be equal to the wave part oi the total field. :nd if the
solution is sought for in the form of lourier spectrum, the field's
wave part may only be found with the aid of equations (1) and (2).
But it is well known that a precise description of the field is
possivle only with the help of the vpotential and that in case of
vectorial fields the condition (2) deterwmines only the normal compo-
nent of the field to the division's boundary. Consequently, the
approach used here is possible, if the vpotential, fully determining
the field, hes one normal component, i, e, the vector-potentizl
must have the form'1pf?¢ﬁnq~OL,vmere ijland i are the normal and
the tanmentiel ciosseute . The field U is linked witl: the vector-
potential by the formula

U= — k2 + grad divy. 3)
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Cbviously, the first component represents in this formula
the wave part of the field. Therefore, fornulas (1) and (2) allow
the finding of the exact solution in the bounded region either for
¥ or (which is the same) for the wave part of the field.

55 an example of the obtention of such 2 solution with the
help of formuleze (1) and (2), let us consider the well known problem
of the dipole field in a plane waveguide, Formulas (1) znd (2)
peruit the easy passing from the solution in case of ideally-conduc-
ting walls ( o0 = O) to the case vhen one of the walls is endowved
with a finite conductivity (&3 0 )., Tor this, it is necessary to
seek a solution in the form of two-dimensional Fourier integrals,
But it then is easy to pass from the equation (1) to the equation
for the spectra S [W] and the S[YJ ~ functions, two-dimensionally
conjusgated by ~ourier in regard to functions V¥ and \f’o. Ior the
spectra, we shall obtain the following equation [5]:

Sl =Shl -+ Sivl S[v - 2] ()

For \VO e shall select a field in & vavecuide in wiose
walls & = 0, Let us assume that & =% on the upper vall of the
viaveguide, i, es that the second component of the right-hand part
of formula (&) nust be computed on the upper wall of the waveguide.
LT the source is disposed at the origin of cvlindrical cocrdinates
on the lower wall of the waveguide, S[\YO] is expressed by the
fornula ’

o ¢h "(H——z) b] 4:4)
St = —swmp : (4]

where H is the heisht oi the waveguide; b is ik, cos G; 0 is the

angle of incicdence, It is then avuropriate to seek S[¥]in the form

ot exp[b(H—1~Bexp[—b(H—2)] 5
S 1] T b expb(T—z)}-FBexp[—b(H—2) e ®)

where B is a factor subject to determination.
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! Such spectirum selection is .uite natural, for it assures
the conversion ,to zero of the normal derivative ¥ at the lower

r boundary and constitutes a naturcl generalization of formula (&),
l :

| The substitution of formulas (2) and (5) into the ecuation (4),

|

wirich takes the forn

S ) = S [Pel - ;S [po}- S[H]
=0 z=0 ==H z=H"

allows to determine the coei.icient B. As this was to be expected
B is equal to the Fresnel reflection -oeiiicient from the upper
boundary, teken with the minus sign., One may analogously pass to

a vavegulde at whose lower boundary* & 3= 0.

Considered below is a waveguide wi.ich is non-homozenous in
the horizontal direction. In the particular case of a piecewise -
uniform waveguide, the approximate solution far off the boundaries
of uniform portions, is searched for witih the help of the equa-
tions (1) and (2). The Green equation is resolved by the iteration
method [[5]. It should be noted, that it vould have been more sequen-

tial to utilize the boundary conditions in the form (1), so that

.

e transition to the apyproximete representation o & — i(ky /ks)
be nmaterialized in the obtained iteration solution. Zuch method
would allow, at least in principle, to estimate the error resulting

irom the approximcte revnresentation of &,

Piliecewise~Uniform avezuide
o

Let be tvo plane~parallel boundaries with a distance h
between them, The reflcction coefficient from the up.er plane is
equael to R(v), where V — is the angle o7 slide cosine. Toundary
conditions (2) are fulfilled on the lo er boundary, so that

a= | 0 r<ry )
: la‘: ra<r<D, n

£

wnere Ty - iz the nonuniivoriity limit an¢ D is the dictance to

the point of observation.



5e

In order to find ¥, let us utilize the Green equation (1).
The total integration surface S consists of 51 and 32 (rezpecti-

vely upper and lower bouncaries); S_ consists in its turn of Spy

2
and 822 (first and sccond uniform sections). For‘wo it is apiro-
priate to select a uniiorm solution in the second section V¥;.

Gquation (1) then takes the form:

=t o ﬂs [y, —y G]as. @)

If onc assunmes, that within the limits of essential integra-~
tion reiion, quantities V¥ and Y2 satisfy approximetely the bounda-
ry conditions (2), the intcgral along 81 is zero. Then, utilizing
the link between ﬂﬁ_and'va s valid with a precision to the condi-
tion (&),

o= e+ | [ g — v ] s, (8)\

Sz

one may obtain for ¥ an aporoximate extres-ion in the form of the

fivst tvo terms of the iteratici cerics
’ 1 d 0.
‘Pz‘l’l“mg[%ﬂh—‘l’lﬁf‘]d& (9)|
.. S8 .

This expression is also obtained with ap lying condition (&)
to the total values VY and'Wb on the upper wall, For that it is
necessory to substract formula (8) from formula (7). Integration
must slso be effect along Sl + 85 in formula (8). 'Je shall obtain
as a rezult, an eguation for W , in which no neglect of any sort
has been nade as yet :

v = — g [ — 05 ]ds +
b ([l ) 3]s +

o | [ — v — ) 2| ds \




S wyhere r anc P are the polar coordinates in the plene z = 0O

If we now apwly the iteration metiod in the right-hand
part, ve shall obtain formule (9), since the integrals along SEl
and 57 will convert to zero, thus, the fact that the total cuan-
tities V¥, and Y4 satisfy approximately the condition (2) near the
uprer boundary, will only take effect in terns proportional to
(@r — a,)2..

Let us now transform formul: (¢), using the following
e:brezszion for \[/j H

ik \ HY BVI=VWA+RYA+F) -
\,,,.:‘_/f_i 0 % 1—R,-F'/ dv, (10)

where Ry i1s the :resnel vefluction factor from the lover boundary ,
which in case |[ki/ky|>1 (k| - veing the wave number un the space 2< 0
may considered egual to Ri=~1 — (2ky/kp). “he value ' is deter-

mined from the formula

F = R (v)exp(2ikvh),

where R (V) — is the reylection factor from the un.er boundary.
In forzula (9}, ¥, 1o tocen from tuc coguuent r, and O, —

from the argument

p._-—:.l/(D\ —r)? + Dr sin"'%,

v
as == rdrd?. In oder to intejrcote along S,, one may approximetely
acouue |B| <€, e < r <D,

Function Ho(l) in formula (10) shall be substituted by its

asynptotic exurezsion [7:]:

va,l»)(x)z Z -9, Sy

X
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Taking advantage of the exact boundary conditions (2),

we shall represent formula (9) in the form:

H® (b VIZZ3) (1 + R4 + F)
v = 1P1—~——Sd3§“g" - 1— RyF 1 X

HY (kopV1—u2)(1+Ra) (1 + F)[szl/kgl/kg—vz iRV B, 1 — v
X ‘

1— ReF B2 : k2, ] dp.dv.

et us subnstitute the sub-intcgrel fusnctions
by their asymptotic expressions according to forumla (11), and
let us integrate along :”5 using the ctationary phrze method,

‘‘hen

iky I'Jd i 1/'2::[' ;

—_— — — —— — |
Y=th—7 8 "ok V 20 X |
re )

I | VL S E
’ A2 ST | 23 —pe
exp [ik (r VI—v® 4+ (D—r) VT = p¥)) k2 2

0
— 5 dpdv.
kyy - ks

4
BLYT= V1 pt [1— R\ F] [1— RoF]

Upon integration alons r and coumputation of the dual
series of deductions, the double integrsl integrel will convert
into the sum of two terms, one of wiich will bs reduced by ¥y ,

and we shall have for V:

NN S e wr o
¥ Vr1+rav—:7<_k—n—-?§>x
exp [ikg (r1 V1 _‘v2—}— r V1“l"‘?n N — VE) e (1)

X N " , (1)

nm (RIF)v——v {RIF}p. =y ( n _y‘m)

wiere ry and r, are the luagtis ol tie Zirst and second portions;
vV, and rum arc the radicals of the ecuations RF =1 and RpF = l.
The structure of formula (12) is anzlogus to that of the correspon-
ding formula in case of terrestrial wave pr rJagation over a spheri-
cal piecewise-uniform layout [5]. rormula (12) satisfies three
threshold transitions: at ry,2 —* 0 it passes to the formula

for \Vl 21 at k12 — k22 is passes to the formula for a uniform \{fi
L]

from the argument of r+ rp.



To demonstrate these transitions it is necessary to pass again

from a dual sum to a double integral. Subsequently, if for example

r, ~» 0, it is necessary to represent the denowminator in the form

1 —RF =1 =RTF + (B —Re)F. Then, deforming the integration
contour encompassing the radicals of the equation 1 — R;F = 0 so
that it embrace the only complementary pole ¥ = j, one may obtain

that the integral along r- be

v o\ & kp / Ri— Ra’

1 (kl kl> 2F

Taking into account now, that R l— Qki/vka), Ry=1— (ﬁ.l_/vkz‘z),f
we shall obtain that this quantity is.equal to the unity,., In the .
case when kal -> k22’ only diagonel terms shall remain in the‘
dual sum. ~After similar transformations with the integral along s
the result of integration will give :

2 O(Ry —Re) -1
v k] B kl ] )
[0( kn ~ kn ) '

thus also the unity., This is precisely the manner in which it was

at formula (172) dcduction, tial upon inewration zlong r
he upper boundary gives a conmponent, vihich will be reduced from Wi.
Tt should be noted that at formula (12) deduction it was assumed
that the only particular points in the in the plene oi W integra-
tion were the poles, equal to radiéals of the equation 1 = RzF.
This is not so in reality, inasmuch as in the plane P, there are
branching points of the sub-intesral expreszion, The unaccounting
of this leads to the conseguence that the solution (1) does not
include lateral vaves, vhich will propagate in lowver meiﬁa toward
both sides of the boundary of nonuniformityf In tis region the
eflfect of cuicky-damping lateral waves will be irsignificant.

It may be shown that it should not be diiiicult to obtain
a formula siwilar to (12) by the induction metho. for the case of

a layout consisting of n uniform sections. 4t fo.iwla (12) deduc-

tion anvuroxinate expression for &« were used, waich is not compulsory

* see addendun



since the precicion of formula (12) ney be improved by introducing
under the sum expreszions of the type V(lazgl/kf))——v2 and so for,

The transitioneto spi.roxinate formulas for & means that, besides
2

20
Such apiroximation is natural, for it always takes place, whenever

Rj ~l1l - (2k°/vkj). Therefore, formula (12) is valid, when in

all the essentizal integration region at the lower boundary the con-

terns (lxl—oca )2, rejected are terms provortional to mf and «

dition (2), in which only the first addend iz retained under the

radical, is valid for the quantities Y, ¥;,V¥o.

Estimate of Corrections linked with the

Variation of the Ceomatrical Form of a Plecewise -

Uniform Vaveguide

Formula (12) for a piecewise-uniform waveguide remains
also valid in the case of a spherical waveguicde., It is possible
trat in a uniform spherical wevegulde, just as in a plane case,

it may be reprezented in the form of the sum of normal waves, whose

i

or sphericity. Yhe correciions

hal)

LR ) Y T, ] gy ey ST
igenvalues have becen M"corvected

+

Av, are corputed by mcans of the foruula

Av, 1 1im 9F@a? ‘ :
v v,& {a-0 OF/Gv ’ ' (13) .

where a is the radius of waveguide's lower boundary i FiC(1/a), 1/a) = 0

is the eqguation of poles, accounting for the sphericity, and also

If a 1is ecusl to a; and a2 in the first and second
sections, formula (l2) is transformed as follows : Instead of ry
and o ti'e exvponent index must contain lengths meesured along a
distorted'sﬁrface, and the values ¥, andpy nust be corrected for
the sohericity with the aid of formula (17). There apnears ahead of

the sum a factor Vﬁfsiryﬁ, vhere ¢ = (n/a) -+ (relaz).



This rcesult is easily obtainable with the -aid of eguations (1), (2),
sirilarly to what was done for the terrestrial wave about a sphere
[5]. The effect of sloping unevennesses of the waveguide may be
investigated the same way as for the terrestrizl vave. It is then
necessary to take into account the fact that a sloping unevenness

is irraciated by a field with a wavelensth k::ko[l——vﬂJh~ (natu-

s

rally in the zone, where only the zero node remainis ). The following
step in the accounting of the effect of slo.ing unevenness consists
in expanding the scatiered field by eigen-function of the waveguide
system, and in finding thereby the corrections for the amplitudes
of norumal waves.

wore complex is the matter of accounting the efrfect of
Jump-like variation of waveguide's height., In that case, the inte-
grotion surface 8§ in the equation (1) will contain an acditional
addend So 4 whose influence may bc etimated if the lengths of
the univorm sectors are great, It is then necescary to form the first

terms oi the iteration series, Contrary to formula (12), a complemen-

tary aldend will appear in the expression for ¥ — the intersral
by tac verticel scction, wiieh for smell Ah, is avout ecual to:
AY ~ koA, (1) s (r2) V raral(rit-r2)” (14)

Comparing Formulas (1-) anda (14) it is not difficult to

obtain that

A\p.;_ kAR Vo — Mo

¥ 8 (ko/kar— kolkza)

Te:ing into account that the variation of wall's properties
of the waveguide (on which & = 0), consisting in that & becomes
a finite magnitude, is eqguivalent to the variation of waveguide's
heizht 0], let us write the condition of nesligibility of the

AYefiect :

A< 1%l (15)



1.

In case of great aistances from the non-homogeneity boundary
this condition dis suificient and valid.

I similer estimate may be obtcined by examining the field
by the joining method [[10] near the jump of waveguide's heizit, on
whose all walls (d¥/dn) = O. Let us trensvort the origin of the
cocrdinates to the voint r = Ty ana pass from cylindrical to rec-~
tangular coordinates. Cn one side of the non-houogeneity V5 nay be

represented in the form (H; =a):

—1 —1 2
‘PA = AOVOA + Z AnvnA COsS nx =

n .

On the other side of the non~honogencity (HZ = Db )

4 -1 —1 z
Vs = Bopos + D) Bmjtmb cOS mat - .
m
Conditions ol continuity of ¥ and of derivatives QVVJn. have
tae form:
‘pA == \pB 0 < r4 < a,
Ya=Vs 0<2<a,:
Y =0 a<2<b.
Hence, for amplitudes of the zero 1odes we obtzin the corre-

lation :
ad, = bB,, (16|

analogus to tle inecuality (15), since it follows from it that

Av—By __a—b _ Ak

A 5T h

within the frawmevork of that scheme one may also coupute
the efiect oi normal waves of higher numbers. To that effect it is
necescary to utilize expaonsions by eigen-functions, and zlso the
conditions of continuity which will lcad to an infinite system of

eqguations for the coeiiicients Ai:



A‘ ;.zAlgu. (17»
[

Coefficicnts g5q ere deturmined by the correlati~ns:

S TTTeR —1)7 o
Qug = v:;:, [( q,“_)__l, - Was — W) (1 — &) + bm(‘—q—a)— Jv] v (18

-

where ¢ - is the wave velocity ; W an

&

are the series

. sin? naa it in?
Wop— , _ sin? nna ‘
0B Vgt Wnp = 2 3 ,
n=1 v S at— 1 i
n=1 nB P
hod andsin?
J = n*sin® nna — 4ac (_. ‘)ﬂ :
q 8oq = i —T—q W,B. \

n4 ]
n=1 vana (—Zg‘ a? — 1)

In orcer to take into account the infinity of the distance
from the source to the limit of the non-homogeneity, it is necessary
to introcduce under the signs ol the sum of series Vi and J the rela-
tions wakdhmm)/ﬂfkkJmQBL‘ and also to conduct certain other trans-
fornations oi formulas (17)and (18). For great values ry; this rela-
tion approaches the unity.

Using asymptotics similarly to formula (11, one may ovtain
the corrections to the formula with an infinitely remote source,
proportional to 1/kyrg. The system (17) may be "cut™" if only the
first m normal waves may propagate in the waveguide., Their auplitu-
des are then calculated approximately.

The above~conducted examination shows that the process of wave
propagation in a non-uniform waveguide has a great deal in comuon

with the process o1 terrestrial wave propagation over the spherical

non-hoilogenous Zarth.

‘'he ressemblance consists in the additivity of the effect of
separate portions, provided they are sufriclently*great. The additi-
vity iz then characteristic also of a plane vavezuide, wixich does
not take place in the case of a piecewise-~uniform course of the ter-

restrisl wave,
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Physically this circumstance is explaincd as follows ¢ It is
well known that in the case of a plane course of tie tcrrestrial
wave, tne propagation process has a fundmentally spatiazl character.
In case of a sphere the part of the field, that diffr-cts in the
shade resion, seems to be somehow sliding along the Dboundary of the
division. The upyer boundary o: the wavepuide dozs not allow the pro-
pagation process to taiie the spatial character. The vaveguide locali-
ses still more intensively the region forming the field at the obser~-
vation point in the vicinity of the lower boundary oI the division :
the gre:t extent of uniform sections, indisiensable for additivity,
iz determined in the case oi a plcne wavegulde by itis height.

The author is grateful to Ya., L. sl'pert for the discussion

of the results of the present work.
wxxx 1 N D wxss *

IZMIRAN Entered on 5 Decenber 1961

Translated by ANDRS L, BRICHANT
for the
NATTIONAL AERONAUTICS AND SPALACE ADMINISTRATION

8 July 1962

HeferenceSes/ e



1k,

REFERENCES

1. D. STRETTON., [leoriya elektromsognetizma, Gosteikhizdat, 1., 1943,

2e fie D, PuTHOVSKIY, E, L, FEYNBERG, Radiotewxhnika i .ilelitronika,
Z, 385, 1960.

3. F. G. BASS. Ibid. 3, 339, 1960.
L, Yu, Ko KALININ, A, D, P°TROVSKIY., Doklas na Vsesoyuznom simposiyume
po diflirekteii, Cdessa, 1960.

5. Y. K, KLI0IN,  Tr, ITFIRAN, 17, 50, 1960.

L
6. L. 1. BRIKFOVIKIKH, Volny v slistykh sredakh. Gostekhizdat, 17, 1956,

4. i, VITS0N, Teoriya besselevykh funktsiy. IL, M., 1949.

8., S, V., BORCDINA, Yu. K. KALIUIN, G. A, MILHAYLOVA, D, S. FLIGEL!'.
Trudy “IZFIRAN", 17, 1350, 1960.

9, WINNERY, JuMISSON, Proc. IRW, No,., 2, 194k,
10, I. B, #.IT. J. Res, Lat. Bur. Standards, No.1l, 1961

ADDENDUM

* Infravacrinal notes.

vase 4o

L (ol

* Fron

In this way it is poscible to find the exact solution of tie Sommer-
feld problem [1]] on a divole field near the boundary of two half-
spaces, and of the more complex problem of a iield in a medium con-
sisting of several layers [ 6].

* From page 8 3

This is imneterial since formula (12) is valid in the second section
at distances of many wavelenghts from the the boundary oi non-uniformity.



